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are discussed. The multipole expansion for the electromagnetic field of the toroidal solenoid 
is obtained and explicit expressions for the toroidal form factors and moments are given. 
Concrete realization of  the current Rowing in the solenoids winding is presented. It is 
shown that uniform rotation ofthe toroidal solenoid with a constant current in its winding 
leads to the appearance of a magnetic field outside the solenoid. For non-uniform rotation 
an electnc field arises. 

1. Introduction 

The toroidal solenoid is a unique object exhibiting a number of interesting properties. 
For example, the magnetic field H may vanish either inside or outside the solenoid 
depending on the current distribution on the solenoid surface [l-31. The small value 
of magnetic flux leakage from the solenoid has favoured its application in controlled 
thermonuclear physics [4,5]. As an accumulator of electromagnetic energy, it is 
extensively used in electromagnetic launcher technology [6,7]. 

The toroidal solenoid is an ideal device for both experimental [8] and theoretical 
[9] investigations of the Aharonov-Bohm effect. According to [lo, 111 the current 
flowing in the winding of a toroidal solenoid is characterized by  new kinds of multipole 

object of extensive theoretical and experimental studies [11-16]. Usually, the elec- 
tromagnetic field of a toroidal solenoid is obtained either through numerical integration 
of the Poisson and Helmholtz equations [17] or through their physical simulation [MI. 
For the static case, closed expressions for the vector potential of the toroidal solenoid 
were obtained in [19] and their properties were discussed in [3]. In [3] the electromag- 
netic field of toroidal solenoid with a time-dependent current was considered. Regret- 
fully, only one half page was devoted to the most important case of the periodically 
varying current. Numerous discussions with radio engineers and physicists dealing 
with toroidal moments has enabled us to consider this particular case in a more 
complete and systematic way, emphasizing the principal points and physical 
consequences. 

This paper is organized as follows. In section 2 we present straightforward calcula- 
tions of vector potential, field strengths and the Poynting vector of the toroidal solenoid 
with the current periodically changing with time. This is important, for example, for 
the construction of toroidal radio antennae [20]. There is a lot of controversy conceming 
toroidal moments in the literature. To clarify this point, we determine in section 3 the 
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usual multipole expansion [21-241 of the electromagnetic field for the toroidal solenoid 
and find that electric multipole moments exactly coincide with the toroidal ones. There 
are known [ 11,361 conditions under which toroidal moments become non-trivial. The 
interaction of a toroidal solenoid with an external electromagnetic field is treated in 
section 4. There exist theoretical considerations [25,26] of electric fields arising from 
electron motion relative to the resting positive lattice ions as well as experimental 
attempts [27] to measure these fields. There has also been experimental research [28] 
of the electric field arising from the rapid rotation of a toroidal solenoid. In sections 
5 and 6 we evaluate electromagnetic field of the rotating toroidal solenoid. It turns 
out that only a magnetic field appears outside the uniformly rotating (around its 
symmetry axis) solenoid. An electric field arises in the case of non-uniform solenoid 
rotation. 

G N Afanasiev and V M Dubovik 

2. The approximate electromagnetic field 

Consider the torus 

( p  - d ) 2 +  z2= R2,  

Introduce the coordinates I?, J, . 
p = d t d cos J, z = R sin I). (2.2) 

The value d = R corresponds to the torus (2.1). Let the periodical poloidal current 
flow over the torus surface (each particular coil lies in the Q =constant plane). The 
density of this current is 

j . cos 01. 

Here 

j = -e S ( I ? - R )  
457 d + R  cos J,n* (2.4) 

g = 2NIf c, N is the total number of coils in the solenoid's winding, I is the current 
in a particular coil, n, is the unit vector tangential to the torus surface and lying in 
the Q =constant plane 

n, = n, cos J, - (n, cos rp + ny sin Q )  sin $I. 

In the Coulomb gauge (div A = 0) the vector potential (VP) corresponding to the 
current (2.3) is given by 

where the volume element is 

dVl = d ( d + d  cos $I) d d  dJ, drp. 

Only two spherical components of A, A ,  and A, differ from zero (see [29] for their 
derivation). They are simplified if the following conditions are fulfilled: 
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1 d sin e 
(cos n + kr sin n)Jo +- (3 sin n -2kr cos n)J, 

r 

(2.7) 
A .  

[ Ad cos 0 
A, = 

AB = -y-- [ d  sin O(Ju -35,) -2kr2J,] +y sin a( J1 - M sin OJ,) 

( a = k  r - ot, A = TR2g). The argument of the Bessel functions in (2.7) is kd sin 0. The 
non-vanishing field strengths are 

H, =- [(k2r2- 1) sin n+ kr cos Q]J, fy sin n sin OJ, 

E --cos n ( J i  - kd sin eJ,) - 7 s m  R [ d  sin 0(J,-3J2) -2kr2Ji1 

E, = - Akd ‘Os e (sinn-krcosi2)Jo+ 

In the wave zone (kr, 1) 

1 1 
E, = H ,  = - Ak2 sin nJ, 2r 2r 

~~3 

A cos n 
4r 2r 

A A M ,  
2r3 4r 

Ak Ak . 
(2.8) ‘-21, 4r 

(3cosn+2krs inn)J1 .  
~ k d ~ s i n  e cos e 

zr4 2r3 

(2.9) E, =y Ak2d cos 8 COS nJ,. 

The radial component of the Poynting vector is 

The integral energy Bow (averaged over the period) is 

’($)’ 4c 
I:[Jl(kd sin 0)l2sin 0 de. 

(2.10) 

(2.11) 

Being related to the square of the total current ( = N I )  this gives the so-called radiation 
resistance [30] 

(2.12) 

The integral occurring here can be taken in a closed form for small and large values 
of kd 

Experimental investigations of the toroidal solenoid with alternate current were per- 
formed almost half a century ago. Their description may be found in an excellent book 
[313, published, regretfully, only in Russian. 

It turns out that limitations imposed by (2.6) are not too severe. As an example, 
consider two experiments perfonned with a toroidal solenoid [31,28]. In the first of 
them [31] the typical frequency was of the order 1 MHz, R - 1 cm, d - 5 cm. This gives 
R / d  -0.2, kR -2 x M - lo-’. Thus, approximate field strengths (2.8) are 
adequate for the description of this experiment. The parameters of another experiment 
[28] were: o - 320 Hz, d - 14 cm, R - 4 cm. Again (2.8) can be used for the analysis. 
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3. The multipole expansion of the electromagnetic field 

3.1. The spherical functions expansion 

In what follows we shall use the current given by 

G N Afanasiev and V M Dubovik 

j exp( - i d )  (3.1) 
where j is given by (2.4). As all components of electromagnetic potentials and strengths 
contain the factor exp(-iot) it will be omitted in all intermediatory expressions. It 
should be restored when the time differentiation is performed or in final expressions 
from which the real part should be taken. The expansion of the vector potential over 
the states with definite orbital momentum is as follows: 

47rik A = -  1 hdkr)Y;"(B, q) [ gdkr')Y;"*(@', q')j(r')  dV'. (3.2) 
i J 

Here 

are the spherical Bessel and Hankel functions. The vector potential may be developed 
over the sphencai basis - 

A = x  (-l)+A+. n-p p=O,*l 

no = n, n,,= r(n,*in,)/JZ (3.3) 

A,=A, A,, = F (A, -t iA, , ) /a .  

In the treated case 

Ao=A, = -ikgR 1 hl(kr)Pl(cos B)F: 

1 
A,,= F-exp(*iq)Ap (3.4) Jz 
A,=ikgRI  hl(kr)P:(cos8)F:. 

Here 

F: = d$(sin $)glP :. (3.5) j F:= j d$(cos $kPI 

In these integrals the argument of gl is kp, p = (d2+ R2+2dR cos P;" are the 
normalized Legendre polynomials (YY(8, q) = (-1)"P ;(cos 8) exp(imq)/&) which 
have R sin $/p as an argument. It follows from (3.5) that only coefficients Fl with 
even values of I are different from zero. Equations (3.4) are valid outside the sphere 
of the radius r = d + R (d and R are the solenoid parameters). For r < d - R the role 
of gl and hl in (3.2) should be interchanged. In a static limit equations (3.4) are 
transformed into 

" 1  1 
A,= -gR 1 5 - PI(COS 8) f p  

r 21+ 1 
(3.6) " 1  1 

f = 2 r  21+1 
A,=gR 1 ~ - P : ( c o s B ) f ~ .  
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Here 

For the infinitely thin (R<< d )  solenoid these quantities are simplified: 

For the sake of completeness we consider the case when the current in the solenoid 
winding exponentially grows or falls ( j  exp(*mf)). The non-vanishing cylindrical 
components of vector potential are 

Here I, and K ,  are the modified Bessel functions. These equations are valid for 
r > d + R. For r < d - R the role of K and Z should be interchanged. These equations 
may be used for the description of toroidal-like Abrikosov vortices. (See [32] where 
more complicated integral forms of (3.7) are used.) 

So far we have considered the radiation of electromagnetic waves by the time- 
dependent poloidal current flowing on the surface of toroidal solenoid. T h e  complemen- 
tary problem is the consideration of electromagnetic oscillations inside the toroidal 
cavity. Regretfully, the wave equation is not separated in toroidal coordinates. For the 
toroidal-like waveguide (formed by two coaxial cylinders and two parallel I =constant 
planes ( p ,  < p < p2, z, < z < z2)) the eigenfrequencies and field strengths were obtained 
in very interesting, yet ancient, references [33]. Further, we have implicitly suggested 
that the poloidal winding is formed by infinitely thin conductors densely covering the 
torus surface. Complications arise when these conditions are not satisfied. This is 
demonstrated in [34] where the electromagnetic waves radiated by the periodical 
current flowing through the spiral cylindrical winding are studied. 

3.2. Main facts on fhe vector spherical harmonics 

Sometimes it is more convenient to represent vector potential and field strengths by 
means of so-called vector spherical harmonics [21-241. The easiest way to obtain them 
is to couple vectorially the spherical unit vectors n,, with Y p  functions occurring 
outside the integral sign in the RHS of (3.2): 

(3.8) Ypn_,=x  C(1, I ,  -p, m; A, m-p)Y: , -@ A = I, /* 1. 
A 

Here 

Y , ” I = ~ C ( l / , - p , m + p ; A m ) n _ , , Y ; ” + ’  
(L 
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are the so called vector spherical harmonics (VSH). Substituting this into (3.2) and 
combining Clebsch-Gordan coefficients with the Yf functions under the sign ofintegral 
we obtain 

G N Afanasiev and V M Dubovik 

The VSH Y; are the eigenfunctions of the orbital and total angular momenta and of 
the third component of the latter (see [22] for details). They are orthonormal on the 
unit sphere: Y;Y?;* dCl= SA,~Sll.S,,~. From YYl and the radial functions g, and h, 
one may organize the vector solutions of the free wave equation: 

A f ( E ) =  (-Ji h,+, YF+l +m hi-1 YT,-,)/v'TTi 

A f ( L ) = ( m  h r + , Y F + , + d  h,-,YF-,)Iv'TTi 
(3.10) 

A f ( M )  = -h ,Yy  

B,"(r) are obtained from A ~ ( T )  when the substitution hl+gl is made. The values 
T = E, M and L in A f (  T )  correspond to electric, magnetic and longitudinal multipoles. 
The vectors A and B are the eigenfunctions of the total angular momentum and its 
third projection. They are orthogonal on the sphere of arbitrary radius. Further, vectors 
A (or B )  may be presented in the following alternative form [21-241 

1 
A,"( L) = - VhIY;" 

k 

h,LYf L = - i r x V  1 
A , " ( W = -  (3.11) 

Vx(Lh,Yf).  
i 
k m  

A f ( E )  = -- 

Reversing equations (3.10) we may express h,Y;(g,Y,,) in terms of A ~ ( T ) ( B X T ) ) .  
Substituting them into (3.9) we obtain 

A = -  X A f ( T ) a f ( T )  a!,,(T)= Bf*(T)jdV. (3.12) 

We refer to a;"(.) as electrical (E), magnetic ( M )  and longitudinal ( L )  form factors. 
In what follows we need the explicit expressions for a f ( r ) .  Here they are 

I 4nik 
C 

J ; =  g,YfIjdV. J 
For k -* 0 we obtain 

(3.13) 
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where j ;  =I r'Y;*j dV. This leads to  the following asymptotic behaviour of form- 
factors: 

a ; " ( M ) -  k'M;"(M) a;"(E)-  k'-'M;"(i?) 

a ; " ( L ) - P M ; " ( L ) .  
(3.14) 

Here M;"(T) are the E, M, L multipole moments: 

(3.15) 

In the absence of charge density the vector potential (3.12) meets gauge condition 
div A = 0. In this case L fonnfactors are equal to zero. To prove this we apply the div 
operator to  (3.12). It follows at once from (3.11) that 

divA;"(M)=divAf(E)=O div A;"(L) = -kh,Yf. 

Thus, 

1 
divA= --4.7rikzx h,Y;"a;"(L). 

C 

As the particular terms of this sum are linear independent, so a?(L)  = O  if div A =O.  
Equating Q ~ ( L )  to zero in equations (3.13) we obtain 

In this case the asymptotic behaviour of a f ( E )  is modified [29]: 

Q ; " ( E ) -  k'+'M;"(E) 

3.3. Multipole form factors and moments for the toroidal solenoid 

It turns out [29] that for the poloidal current (3.1) 

a ; " ( M )  = a;"(,!,) = O  
M ; " ( E )  = &&fl(E) 

a ;" (€ )  = SmoadE) 

where a l ( E )  and M I ( € )  are given by 

1 Rgc 1 
M , ( E )  = -- - - J?; r(i+f) z ' + ~  Jl(rilt 

(3.17) 

(3.18) 

(3.19) 
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(functions F and f were defined earlier ((3.5) and (3.6))). In obtaining (3.19) the 
following relation was taken into account [29] 

fl !--Ef;. - (3.20) 

G N Afanasiev and V M Dubovik 

Substituting (3.18) and (3.19) into (3.12) we get in the static limit 

(3.21) A = R g f i  f [(2l+1)(21+3)1- r ,:2f~+lY~.~+1. 

It is easy to check that particular components of this equation exactly coincide with 
(3.6). From (3.21) one easily obtains the field strengths outside the solenoid 

1 1 2 i  n 
I = I  

or in spherical components 

(3.22) 

The electromagnetic energy flow through the sphere of sufficiently large radius is 

The factor 1/2 in the LHS of this equation takes into account the difference in time 
dependences of current densities (2.3) and (3.1). 

One may wonder what is the profit in presenting vector potential in three different 
ways ((2.7), (3.4) and (3.12))? There are certain reasons for this. Since (2.7) contains 
all multipoles in a closed form, it is easier to operate with it in practice. Further, the 
VSH expansion contains a lot of ‘reefs’ (discussed in the following section). So, 
expansion (3.4) may be used as a guiding point to escape them. On the other hand 
there are physical problems for which the Helmholtz equation is easily solved in terms 
of VSH, and practically unsolvable when the usual spherical functions are used. The 
VSH realization of most general non-static solenoid found recently in [35] clearly 
demonstrates this. 

3.4. Toroidal form factors and moments 

There is a lot of controversy concerning these quantities (see the discussion in [36]). 
The usual expansion in terms of VHS is complete. What are the reasons to add something 

surface generates a toroidal (or anapole) moment [lo, 11,361 (in exactly the same way 
as circular current induces a dipole moment) which has clear geometrical sense. It is 
directed along the torus symmetry axis (figure 1). The second reason is due to the 
implications arising in the long-wavelength limit. We shall see in this section that 

s l J G i  TL” C-^r ,caayII is a physica! ace. The po!nida! current Bnwing nn the t n ~ ~ s .  
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Figure 1. The toroidal moment generated by the paloidal current. 

introduction of toroidal form factors makes it possible to separate explicitly singular 
terms. We have found in the previous section the radiation field of a toroidal solenoid. 
Based on this we intend now to obtain explicit values of toroidal moments and 
form-factors and discuss their properties. The usual way [ l l ]  to introduce the toroidal 
moments and form factors starts from the consideration of general case when both 
charge ( p  exp(-iwt)) and current ( j  exp(-iwt)) densities are different from zero. The 
development (3.12) is still valid, but the longitudinal form factors a;"(L) are no longer 
zero. The electric scalar potential is given by 

@=4nik  exp(-iot) 1 h,Y;(O, q ) q ;  

where q r = j g , Y ; " * p  dV. Potentials CP and A now meet the Lorentz gauge condition 

1 a@ 
div A + -  -= 0 

C J t  

from which the relation between qT and a;"(L) follows: 

I 

C 
q;"=-a;"(L) .  (3.23) 

By developing Bessel functions on both sides of this equation we observe that it cannot 
be satisfied in any order (for non-vanishing charge density). The reason is that p and 
j in (3.23) are connected by the continuity equation div j =iop and, thus, they are not 
independent of o (or k ) .  We consider (3.23) as the definition of (I;". Its dependence 
on k is determined by the Bessel functions in the RHS of (3.23). 

We turn again to the expansion (3.12). It is easy to check that the terms relating 
to E and L multipoles taken separately diverge in the long-wavelength limit. In fact, 
a ; ( € )  and a;"(L) (see equations (3.14)) decrease as k" for k + O  while A;"(,?) and 
A;"(L) (see equations (3.10)) grow as k-'-*. Taking into account the overall k factor 
at the front of (3.12), this leads to a K2 divergence for either E or L multipole terms. 
On the other hand, there are no divergences in (3.2) or (3.9), from which (3.12) easily 
follows. This means that singularity of E multipole terms is exactly compensated by 
that of L multipole terms. In fact, substituting A;"(T)  and a f ( r )  into (3.12) and 
regrouping terms we arrive at (3.9) which does not contain singularities. The other 
way [ I l l  to deal with singularities in (3.12) is to separate explicitly their contribution 
to E and i muitipoie terms. 

Combining (3.13) and (3.23) we get 

21+1 
a;"(€)= -ic G q Y -  (3.24) 
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or in a slightly different form 

G N Afanasieo and V M LJubavik 

(3.25) 

Here M ; " ( Q )  is the moment of charge distribution 

It is defined by the asymptotic behaviour of q;" for small values of k: 4;"- 
k'-'M;"(Q). The quantity 

21+1 
a;"( T )  = -ic e [qr -  k'-'M;"(Q)]- & J;+I (3.26) 

is called the toroidal (T) form factor. It decreases as k'+': 

a;"(T)-k'+'M;"(T) 

This coefficient is referred to as toroidal multipole moment. Substituting a;"(E) given 
by equations (3.24) into expansion (3.12) we observe that singular term in a;"(E) 
involving M;"(Q) exactly compensates the singularity of the L multipole term. The 
toroidal form factor a;"( T) appears as a coefficient at A;"(E) .  It gives finite contribution 
to the vector potential in the long-wavelength limit and, thus, to the coefficient at rF-' 
in the solution of the corresponding Laplace equation. Up to now we have considered 
the general case when both current and charge densities are different from zero. 
Consider the case of vanishing charge density. As M;"(T)  contains no sign of charge 
density p it should have the same form of any choice of p and, particularly, for p = 0. 
On the other hand, in the absence of charge density we have q;" = a;"(L) = O  while 
a;"(E) decreases as k'+' (see (3.17)). The terms corresponding to E multipoles in the 
expansion (3.12) are well-behaved now and no renormalization of $ ( E )  is needed. 
So, we simply put q;" = 0 in equations (3.24)-(3.26) and arrive at 

a ; " ( T ) = a ; " ( E ) = -  JZ+i.  (3.28) 

The E and T multipole moments corresponding to (3.28) are given by (3.17) which 
is certainly different from MY( T) given by (3.27). To see the reason for this controversy 
we turn'to (3.23). Put q ; " = O  in (3.23) and develop a;"(L) in powers of k The 
disappearance of coefficients at k'-lt2" results in 

f l ( l + n + f )  1 r'-'+'"YZt, j d V =  n m  r'-1+2nY;$I jdV.  I 
For n = 1 this gives 

(3.29) 
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Multiply (3.29) by an arbitrary constant a and combine it with (3.27) to give 

+ ( I  - a )  r'+'YG?!, j dV]. I 
For a = 1, a = O  and a = - l / l+ l  we arrive at equations (3.17). (3.27) and 

(3.30) 

(3.31) 

respectively. Since (3.29) is satisfied identically, so the dependence of a in (3.30) is 
fictitious. The coincidence of (3.30) with either (3.17) or (3.27) means that (for vanishing 
charge density) the toroidal form factors and moments are not distinguishable from 
the electrical ones. For the particular poloidal current (3.1) a;"( T )  and M;"( T )  may 
be written explicitly a;"(T)= 6,,ai(E), M;"(T)= 6,,Mf(E) where a l ( E )  and Mf(E) 
are defined by (3.18) and (3.19). We thus conclude that poloidal current (3.1) with 
vanishing charge density radiates only electrical multipoles (more accurately, the 
multipole expansion of vector potential contains only E multipoles). Toroidal form 

under consideration they carry no new information. They become important when 
non-vanishing charge and current densities form non-trivial topological configuration 
W1. 

c",.t̂ r" "..A ...,....-..*- ,.-:..-:A- ... :.I. .I.̂ -*--.-:- ---- --_ I  .L--- O..*L. ..- -- - 
L ~ C L Y I D  PUU ~ ~ ~ Y l l l c i l l l u  C U L L I W U S  W l l l l  LUG CICLLLIC. UIICS dnu, LnUb, 101 LnC pdnlCUldI Case 

4. The interaction of a toroidal solenoid with an external electromagnetic field 

The interaction of the current j with the external magnetic field HeXt is given by 

C 
(4.1) 

Here A is the VP ofthe magnetic field Heit = rot A: Let the distance between the magnc!ic 
field source and the constant current j flowing in the solenoid's winding he much 
larger than the solenoid dimensions. Then, in the neighbourhood of the solenoid the 
vector potential may be presented in the form 

J A , ( ~ z )  1 J ~ A ~ '  
Ai( r )  = AI( a )  +- Xk+-- & X I  + . . . . 

J x h  2 Jx,Jx, (4.2) 

(It is suggested therefore that A varies rather slowly in the solenoid's vicinity.) Here 
a is some fixed point near the solenoid and r defines the position of a particular current 
element with respect to this point. Inserting expansion (4.2) into (4.1) we obtain (for 
the poloidal current (2.4)) 

U =  -pdHcif-ip, rot He,,+ . . . . (4.3) 

Here fld is the dipole magnetic moment: p d  = M d V, 

/A,=] r x M d V  (4.4) 
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and M is the magnetic moment density M = (1/2l)r x j. For the poloidal current (3.1) 
the non-vanishing components of M are: 

M, = - M  sin 'p My = M COS 'p 

G N Afanasiev and V M Dubovik 

g R + d c o s $  
d f R cos *' M =- s ( ~ - R )  

8 TC 

(4.5) 

This means that only the 'p component of M differs from zero ( M ,  = M). It follows 
from (4.5) that p,, = 0, i.e., the magnetic dipole moment equals zero for the toroidal 
solenoid. For the poloidal current (3.1) the single nonvanishing component of pt is 
directed along the symmetry axis of the solenoid (figure 1) and equals 

3 
p, = (xM, - y M , )  d V  =- 71g dR2. (4.6) I 4c 

Writing out the triple vector product in (4.4) we get 

(4.7) 

Comparing (4.7) with (3.31) we recover the coincidence of pLli with either E or T 
multipole momenta. Since pd disappears for the toroidal solenoid the interaction (4.1) 
may be presented in the form 

(4.8) U = - '  3 r Ot H c x t .  

Using the Maxwell equation 

1 JE,,, 471 
rot He,, =- -+c j,,, 

c J i  

and taking into account that expansion (4.2) is valid at sufficiently large distances from 
the external field source (where j..,=O) one may rewrite (4.8) as [lo, 11,361 

(4.9) 

It follows from this that the toroidal solenoid interacts with the external electromagnetic 
field if the electric field has a non-vanishing and time-dependent component along the 
symmetry axis of the solenoid. This assertion grounds essentially on the fact that the 
dimensions of the solenoid are small wrt distance from the electromagnetic field source. 
Interaction with the static magnetic field is possible if this condition fails. To see this 
we introduce instead of the current j the magnetization A: 

c rot .U = j. (4.10) 

The magnetization 4 corresponding to j given by (2.4) is 

(4.11) 

As the current and magnetization formalism are entirely equivalent [21,37], one may 
forget about the solenoid current and treat the solenoid as a magnetized ring with 
magnetization defined by (4.11). Its physical realization [8] is a hard ferromagnetic 
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ring having magnetization (4.1 1) that is independent of applied fields. Now we substitute 
(4.10) into (4.1): 

U = -  Aro tYdV.  I 
Integrating this equation by parts one gets 

U = -  H.,,YdV. (4.12) 

It follows from this that the toroidal solenoid interacts with the external magnetic field, 
the 'p component of which has non-zero overlapping with the solenoid magnetization. 
As an example, consider the toroidal magnetized ring and the linear current. It turns 
out that interaction energy (4.12) differs from zero only if the linear current passes 
through the torus hole. 

Consider two toroidal solenoids with constant currents in their windings. Do these 
solenoids interact? (This question was posed by Smorodinsky [38].) Their interaction 
is given by 

J 

Using the relation jl = c rot 4 and integrating by parts one gets 

-1 H2(W1(r)  dV. 

From this it follows that there is no interaction between the non-overlapping solenoids 
(as the magnetic strengths and magnetizations are confined inside the solenoids). 

5. The model of toroidal solenoid current 

It should be explained first why the concrete realization of poloidal current flowing 
on the solenoid's surface is needed. The reason is that in real conductors (from which 
the surface current is composed) there are electrons which move relative to the positive 
lattice ions. There are numerous theoretical considerations (see [25] and references 
therein) which predict the appearance of electrical field (of the order IJ'/c') arising 
from the electron motion. As their drift is of the order 1 mm s-I [27], so these effects 
are negligible. To increase electron velocity an experiment was performed [28] in which 

field associated with solenoid rotation was found, there is increasing activity in this 
field (see [39,40] and references therein). Our first goal is to evaluate the electromag- 
netic field (io the framework of usual Maxwell theory) arising from the solenoids 
rotation. 

Consider torus (2,1), In what follows we shall extensively use the toroidal 
coordinates 

m-, tc:oida! .,o!enoid was pnt into yapid x?!?.:ieZ. P.!t!Eugh Ze .,ddit;.en.,! c!c-tdc.%! 

a sinh p cos rp (1 sinh p sin rp a sin 0 
I =  

'=coshW-cosO cosh p - COS 0 X =  
cosh p - COS 9 

(5.1) 
(O<p<CC - a < 0 < n  occp <Za). 
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For p fixed the points P(x ,  y, z )  fill the surface of the torus with the parameters 
d = a coth p and R = a/sinh p. Let p = po correspond to the torus 1 Then, for p > po 
( p < p o )  the point P ( x ,  y, I) (where x,y,  z are given by (5.1)) lies inside (outside) T. 
The infinitesimal volume element expressed in toroidal coordinates is 

G N Afanasiev and V M Dubovik 

sinh p d p  d8 d p  
(coshp-cos 8)" 

d V = d  

The current density j is given by 

I = - - -  gc 1 S(p-p, , ) (coshpLO-cose)* .ng 
4rra' sinh pLo 

(5.2) 

Here ng is the same as nly (see section 2) but being expressed in toroidal coordinates: 

n,=[(n,cosp+n,sinp)sinhpsSin B+n,(l-coshpcos 8)](coshp-c0~ e)-'. 
For constant current H = n- .  g / p  inside the solenoid and H = 0 outside it. The VP has 
two non-vanishing cylindrical components (A, and Ax).  At large distances they 
decrease as 1-l 

cosh p,, sin 28, ko -+  ngo3 ~ ~ 

cosh pn 1 + 3 COS 28, 
sinh3po r3 sinh'p, r3 

A,-Qrrgu3- 

(8. is the spherical polar angle). 
Their explicit expressions are given in [19]. Now we try to simulate the solenoid 

current as a relative motion of charged layers, out of which the surface charge 
distribution is composed. We require the following conditions to be fulfilled: (1) the 

inside and outside the solenoid; (3) the rotation of the elements composing the 
particular charged layer in the (p =constant plane (each element rotates in that p = 
constant plane in which it lies) should reproduce the current distribution (5.2) and as 
a consequence the vector potential of the toroidal solenoid. 

a-.-# -t.---- -L-..1.1 L- 1 -~- - .  I*\ r L -  -t,.-&---+-+:- . --m-+iol .Ln..lrl .,"-:-I. k-+h 
L V L L I l  blra.r&r Jl lUUl" Uci q U a L  LTIV, (L,  lllr C L r C L L Y D L a L l r  &,"LC.LL"U D I L Y Y L "  " ( L U L U L I  ""LLL 

We seek the charge distribution in the form 

U =  ~ , S ( C L - p , ) + ~ ~ ~ ( p - - / I Z ) + ~ ~ ~ ( C L - I L O ) .  (5.3) 

For definiteness we choose p,>p2>po.  The charge distribution consists of three 
charged toroidal shells encompassing each other (it is impossible to meet conditions 
(1)-(3) using a charge distribution consisting of two layers). The layers corresponding 
to p = po and p = pI are external and internal ones (figure 2).  Let each element of the 

Figure 2. The model of polaidal current. Charge distribution consists of three charged 
shells (0, I ,  2). The electrostatic potential differs from zero only between shells 0 and 1. 
The rotation of external shell 0 simulates polaidal current. 
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external layer ( p  = pO) rotate in the 'p =constant plane with angular velocity w. We 
choose uo so as to reproduce the current density (5.2). This gives 

gc (cosh po-cos 
U ~ W R  = -- 

4 m 2  sinh pa 
(5.4) 

Here R = o/sinh p, is the radius of the external shell. Or in a slightly different form 

(cosh pn-cos sinh po 
f = -gc-. 

sinhp, 4 m 2 w  
(5.5) 

We give only the final answer. The electrostatic potential vanishing both inside ( p I  < p < 
CO) and outside (0 < p < po) solenoid equals 

1 
@ = 8J?fa2(cosh p -cos 1 - ~ ~ - ~ / ~ ( 0 )  COS ne  

1 + 8.0 
x r~"-1/2~o~Q"--l/l-Pn--1/2Q"-l/2~~~1 

between '0' and '2' charged shells (pn < p < p2) and 

x rP.-1/2(1)Q.-,/2-P.-1/2Qn-1/2(1)1 
between '1' and '2' charged shells ( p  < p < p l ) .  Here we put 

Pi( i )  = P:(cosh pi) Qi(i)= Q:(cosh p i )  i = o , 1 , 2  

rn(i,A = Pn--lj2(i)Qn-lj2(.i)  - Qn--1/2(i)Pn-l/2(.i). 
From now we do not indicate the argument of the Legendre functions if it equals cosh p. 

The discontinuity of d@/dp at p = p,  and p = p2 fixes uI and u2 

The constant f determines the value of the charge on each of the layers 0, 1 and 2: 

eo= un8(p l p 0 )  dV=4?r2fu'/sinh po 

It is easy to check that 
en+el + e2= 0 

i.e. the treated charged distribution is electrically neutral. The uniform rotation of the 
elements composing '0' shell in the 'p =constant plane with angular velocity w simulates 
the surface current (5.2). As a result, the vector potential satisfying the Poisson equation 

4n 
AAm = -- jw 

C 
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is generated. The constant g entering into the definition o f j  (see ( 5 . 2 ) )  may be expressed 
through 

G N Afanasiev and V M Dubovik 

g =  -we,/?rc. 

This means that for A, we may use explicit expressions of the VP obtained in [19] 
with g defined by the last equation. Thus the electrostatic potential 0 and surface 
densities uj meet conditions (1)-(3) mentioned above. 

6. The rotating toroidal solenoid 

In what follows we consider the rotation of the toroidal solenoid with current distribu- 
tion constructed in a previous section. The charge density of this solenoid differs from 
zero (it consists of three charged shells). This means that the electromagnetic field 
generated by its rotation should not coincide with the field of the rotated magnetized 
ring with the magnetization (4.1 I )  for which charge density equals zero. Let the solenoid 
rotate as a whole around the symmetry axis z with angular velocity 11 (figure 3). Then 
in addition to the poloidal current (5.2) there appears current 

i n  = j 3 ,  j :  = uuq = apu (6.1) 

flowing in the latitude direction. Here U is given by (5.3), p = a  sinh p/(cosh p -cos 8 )  
is the distance between a particular element of the charge shell and the z axis. The 
current (6.1) generates VP satisfying the Poisson equation AA,= -(4n/c)jn. It turns 
out that A, has the single non-vanishing component (A:) given by 

A:= (cosh p-cos @'I2  1- A J ~ )  cos ne. (6.2) 
1 +&U 

The functions A. (p )  are given in [29]. For the infinitely thin charge distribution 
( ~ l = p o + A , , p 2 = p u + A l ,  A l ~ ~ p u , A 2 ~ ~ p u )  they are equal to 

An = ~ ~ [ Q L I ~ Z ( ~ ) I ~ P L I / ~  
outside the solenoid 

An = ~.Q~~I/~(~)P:,-~,Z(~)Q:,--I/Z 
inside it. Here 

11cothpu(A,+A2). 
8Afa '  

c ( n 2 -  114) 
(1" = 

Figum3. The uniform rotation of solenoid around its symmetry axis leads to the appearance 
of a magnetic field outside the solenoid 7. The electric field arises for non-uniform rotation. 
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At large distances A: decreases as r?, i.e. A$ - d o  sin 0Jr2. Here 0, is the polar angle. 
For the infinitely thin charge layer (general case is considered in [ 2 9 ] )  constant a is 

The non-vanishing components of magnetic field decrease as F3 

dfl  sin 0, 
r3 ‘ 

U -  
2af l  cos @, 

r3 
“ 0  - U^. 

‘1,  
I L  I\ 
\ V . J l  

The electric field E = 0. The total vector potential of a rotating solenoid is 

A = A, +An 

where A, is the vector potential of the stationary solenoid and An = A:n,. 

toroidal solenoid. This is confirmed experimentally [28]. 

growing with time: v =Opt. Then the total vector potential tums out to he equal to 

It follows from this that there is no electric field outside the uniformly rotating 

Let the solenoid rotate as a whole around its symmetry axis with the velocity linearly 

Here A, and A: were defined above. The constant p is aiso given in [isj. As a resuit, 
the constant electric field E, = -l/cA: and the linearly increasing magnetic field 
H = I rot(A: . n,) arises outside the solenoid. At large distances one has 

2 a n t  cos 0, 
r3 E, - -- H , -  

%e radia! co-pocec: of the Poyxti-g rector is. directed oE !he so!ennid: 

af l t  sin 0, 
r3 (6.5) 

1 an sin 0. 
c r2 He - 

ta’fl’ sin’ 8, 
S, = 4?rc2r5 ‘ 

We thus conclude that the closed current arising from the accelerated rotation of 
the solenoid leads to the appearance of an electric field outside that solenoid. This 
does not contradict the Maxwell equations. In fact, field strengths (6.5) are their direct 
consequence. 

7. Couclusiou 

We briefly summarize the main results obtained: 
( i  j i n e  eiecrromagneric radiation fieid of ihe roroidai soienoid is obiained. its 

properties are investigated. 
(2) The multipole expansion of the solenoids radiation field is obtained. The 

multipole form factors and moments are evaluated and their relation to the toroidal 
ones are established. 

(3) It is shown how the toroidal solenoid interacts with an external electromagnetic 
fie!d. 

(4) It is shown that a magnetic field arises outside a uniformly rotating toroidal 
solenoid. Both electric and magnetic fields appear outside a non-uniformly rotating 
solenoid. 
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